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About us

» The PicSOM group from Aalto University has taken part in
TRECVID since 2005.

» Before 2010 the university was called Helsinki University of
Technology (Aalto = HUT + HSE + UIAH).

» In this year we participated in the semantic indexing (SIN)
and known-item search (KIS) tasks.
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Motivation

» We are currently working with the Finnish Broadcasting
Company (YLE) and the National Audiovisual Archive
(KAVA) on content-based analysis on the live TV signal.

» This includes doing fast online semantic indexing on
streaming video
= increased emphasis on scalability and speed.
» Also, improving the speed of offline training of detectors.
» In TRECVID 2011 we focused on radically improving the

speed of both the online and the offline components of the
semantic indexing pipeline.
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Semantic indexing pipeline

feature 1 —
feature 2 —
: —

feature N—— | classifier

» (Color)SIFT + SVM (x?) + (weighted) geom. mean fusion.
» Similarity Cluster weighting (Wilkins et al, 2007).

» Offline: extract features from training data, train classifiers
(parameter selection most time consuming).

» Online: extract features from new image(s), predict with
trained detectors.
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Feature extraction

v

Bag-of-visual-words features (BoV) very successful.

Best results for PicSOM group in TRECVID: ColorSIFT
with dense sampling, 1x1-2x2 pyramid, soft assignment,

v

» However, computationally very expensive: about 1 image
per second.

Consider: (online) 25 frames per second video (!), or
(offline) 3 million image database: 35 days.

v
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Feature extraction, cont.

» We have looked at other non-BoV features.

» Local Binary Patterns (LBP)', simple and efficient texture
operator, useful e.g. for face description.

» A promising choice: CENsus TRansform hlSTogram
(Centrist)?.

» Basically an LBP histogram reduced in dimensionality (40)
with PCA, plus mean and stddev.

» This done in a 2 level spatial pyramid, giving a
dimensionality of (40 +2) x (25+ 5+ 1) = 1302.

1Pietikéinen, Hadid, Zhao, Ahonen:, Computer Vision Using Local Binary Patterns, Springer, 2011

2Wu, Rehg: CENTRIST: A Visual Descriptor for Scene Categorization, PAMI, 2011.

Aalto University PicSOM group
School of Science November 30, 2011
u

6/16



SIFT vs Centrist

Example: extract features for 2268 images

» ColorSIFT: 43 minutes, about 1 image per second
» Centrist: 49 seconds, about 50 images per second

Centrist is roughly 50 times faster.

Now live video starts to look feasible!
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Training classifiers

» Kernel SVM’s state-of-the-art, but computationally
expensive.

» Linear classifiers fast, but less accurate.
» Offline, but constrains database size, concept vocabulary,
less room for experimentation.
Parameter selection most time consuming phase:
» C-SVM has two parameters (C,~) (LIBSVM'),

» linear classifier (L? regularised logistic regression solver
from LIBLINEAR) has only one parameter (C).

! Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, ACM TIST, 2011.

Aalto University PicSOM group
School of Science November 30, 2011
u 8/16



Training classifiers, cont.

» Parameter selection times in TRECVID 2011, with a
somewhat naive line search followed by grid search.

» SVM: on average 3 days!
» linear: on average a bit more than 1 hour!

» (A strong bias towards SVM since our cluster has a
maximum run-time of 7 days!)

hours SVM | linear X
min 0.6 02| 35
max 168.0 42 |40.3
median 33.9 1.2 | 27.2
average | 79.1 1.3 | 61.1

Aalto University PicSOM group
School of Science November 30, 2011
u

9/16



Prediction with trained classifier

» Critical in online scenario: detect concepts in new images.

» Prediction with LIBSVM takes around 100-500
milliseconds per image with ColorSIFT features

» Consider: with 300 concepts (e.g. TRECVID) this is in the
order of 100 seconds per image.

» LIBLINEAR takes 1-3 milliseconds per image.
» In the order of 1 second per image or less for 300 concepts

» Real-time video is typically 25 images per second or more,
of course not all frames need to be classified
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Experiments

classifier | feature MXIAP
SVM ColorSIFT 0.1233
SIFT 0.1139
Centrist 0.0939
linear ColorSIFT 0.0329
SIFT 0.0292
Centrist 0.0289
EdgeFourier 0.0101
ScalableColor 0.0182

» Centrist not quite as good as BoV features, but quite good
considering 50-fold speedup.

» LIBLINEAR for single features much worse than LIBSVM.
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Time estimates

classifier + features MXIAP | offline (days) | online (secs)
SVM ColorSIFT 0.1233 77.0 45.6
SVM Centrist 0.0939 5.5 45.0
SVM 3 best fusion 0.1363 123.3 136.0
linear ColorSIFT 0.0329 73.7 1.1
linear 3 best fusion 0.0827 113.5 2.3
linear 12 fusion 0.0986 189.2 7.0
linear 14 fusion 0.1145 591.2 11.4
SVM Centrist + linear 10 | 0.1116 81.2 50.2
SVM 3 + linear 14 0.1398 601.1 146.4

» Rough estimate of offline and online processing times.
» Scenario: 1M images, detecting 300 concepts online.
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Time estimates, cont.

classifier + features MXIAP | offline (days) | online (secs)
SVM ColorSIFT 0.1233 77.0 45.6
SVM Centrist 0.0939 5.5 45.0
SVM 3 best fusion 0.1363 123.3 136.0
linear ColorSIFT 0.0329 73.7 1.1
linear 3 best fusion 0.0827 113.5 2.3
linear 12 fusion 0.0986 189.2 7.0
linear 14 fusion 0.1145 591.2 114
SVM Centrist + linear 10 | 0.1116 81.2 50.2
SVM 3 + linear 14 0.1398 601.1 146.4

» Centrist result is in the same order of magnitude as
ColorSIFT, but much faster to calculate.
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Time estimates, cont.

classifier + features MXIAP | offline (days) | online (secs)
SVM ColorSIFT 0.1233 77.0 45.6
SVM Centrist 0.0939 5.5 45.0
SVM 3 best fusion 0.1363 123.3 136.0
linear ColorSIFT 0.0329 73.7 1.1
linear 3 best fusion 0.0827 113.5 2.3
linear 12 fusion 0.0986 189.2 7.0
linear 14 fusion 0.1145 591.2 11.4
SVM Centrist + linear 10 | 0.1116 81.2 50.2
SVM 3 + linear 14 0.1398 601.1 146.4

» Linear results improve strongly by adding features.
» Even with five times more features, 10-fold speed increase

compared to SVM.
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Time estimates, cont.

classifier + features MXIAP | offline (days) | online (secs)
SVM ColorSIFT 0.1233 77.0 45.6
SVM Centrist 0.0939 5.5 45.0
SVM 3 best fusion 0.1363 123.3 136.0
linear ColorSIFT 0.0329 73.7 1.1
linear 3 best fusion 0.0827 113.5 2.3
linear 12 fusion 0.0986 189.2 7.0
linear 14 fusion 0.1145 591.2 114
SVM Centrist + linear 10 | 0.1116 81.2 50.2
SVM 3 + linear 14 0.1398 601.1 146.4

» Linear prediction is fast even with many features.
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Conclusions

» For offline speed, fast feature calculation is most critical.
» Centrist is 50 times faster than best BoV feature.

» For online speed, prediction time of classifier is most
critical.

» Linear classifier is 50 — 100 times faster than kernel SVM.

» With many features, linear classifier can achieve same
order of magnitude MXIAP as single best SVM.
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